Literaturliste zum Advertorial „Die Wirkung von Hafer auf die Mikrobiota“ im Sonderheft 2020 des VFED „Ernährung bei gastrointestinalen Erkrankungen – Prävention und Therapie“:
Auf die durch Fettdruck hervorgehobenen Studien wird in dem Advertorial Bezug genommen.
Korczak R, Kocher M, Swanson KS. Effects of oats on gastrointestinal health as assessed by in vitro, animal, and human studies. Nutrition Reviews 2019 Oct 22. pii: nuz064. doi: 10.1093/nutrit/nuz064
McGill CR, Fulgoni VL 3rd, Devareddy L. Ten-year trends in fiber and whole grain intakes and food sources for the United States population: National Health and Nutrition Examination Survey 2001–2010. Nutrients. 2015;7:1119–1130.
Connolly ML, Tzounis X, Tuohy KM, et al. Hypocholesterolemic and prebiotic effects of a whole-grain oat-based granola breakfast cereal in a cardio-metabolic “at risk” population. Front Microbiol. 2016;7:1675.
Thies F, Masson LF, Boffetta P, et al. Oats and bowel disease: a systematic litera- ture review. Br J Nutr. 2014;112(suppl 2):S31–S43.
Rose DJ. Impact of whole grains on the gut microbiota: the next frontier for oats? Br J Nutr. 2014;112(suppl 2):S44–S49.
Klurfeld DM, Davis CD, Karp RW, et al. Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome. Am J Physiol Endocrinol Metab. 2018;315:E1087–E1097.
Carlson JL, Erickson JM, Lloyd BB, et al. Health effects and sources of prebiotic die- tary fiber. Curr Dev Nutr. 2018;2:Nzy005.
Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–1064.
Yang J, Keshavarzian A, Rose DJ. Impact of dietary fiber fermentation from cereal grains on metabolite production by the fecal microbiota from normal weight and obese individuals. J Med Food. 2013;16:862–867.
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–2340.
Carlson J, Esparza J, Swan J, et al. In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals [published correction]. Food Funct. 2016;7:1711.
- Thornton JR. High colonic pH promotes colorectal cancer. Lancet. 1981;317:1081–1083.
- Malhotra SL. Faecal urobilinogen levels and pH of stools in population groups with different incidence of cancer of the colon, and their possible role in its aetiol- ogy. J R Soc Med. 1982;75:709–714.
- El-Salhy M, Ystad SO, Mazzawi T, et al. Dietary fiber in irritable bowel syndrome (review). Int J Mol Med. 2017;40:607–613.
- Grabitske HA, Slavin JL. Low-digestible carbohydrates in practice. J Am Diet Assoc. 2008;108:1677–1681.
- Cummings JH, Bingham SA, Heaton KW, et al. Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology. 1992;103:1783–1789.
- Korczak R, Slavin J. Effects of oats and b-glucan on gut health. In: Chu Y, ed. Oats: Nutrition and Technology. Hoboken, NJ: John Wiley & Sons; 2014:299–310.
- Carlson JL, Erickson JM, Hess JM, et al. Prebiotic dietary fiber and gut health: com- paring the in vitro fermentations of beta-glucan, inulin and xylooligosaccharide. Nutrients. 2017;9:1361.
- Chappell A, Thies F, Martin PF. Fermentation of oats (Avena sativa) by the fecal microbiota using an in vitro colonic fermentor system. Proc Nutr Soc. 2015;74:E302.
- Connolly ML, Lovegrove JA, Tuohy KM. In vitro evaluation of the microbiota mod- ulation abilities of different sized whole oat grain flakes. Anaerobe. 2010;16:483–488.
- Kim HJ, White PJ. In vitro fermentation of oat flours from typical and high b-glu- can oat lines. J Agric Food Chem. 2009;57:7529–7536.
- Nordlund E, Aura A-M, Mattila I, et al. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J Agric Food Chem. 2012;60:8134–8145.
- Chen HL, Haack VS, Janecky CW, et al. Mechanisms by which wheat bran and oat bran increase stool weight in humans. Am J Clin Nutr. 1998;68:711–719.
- Kaukinen K, Collin P, Huhtala H, et al. Long-term consumption of oats in adult ce- liac disease patients. Nutrients. 2013;5:4380–4389.
- Li J, Hou Q, Zhang J, et al. Carbohydrate staple food modulates gut microbiota of Mongolians in China. Front Microbiol. 2017;8:484.
- Nilsson U, Johansson M, Nilsson A, et al. Dietary supplementation with b-glucan enriched oat bran increases faecal concentration of carboxylic acids in healthy subjects. Eur J Clin Nutr. 2008;62:978–984.
- Rebello CJ, Burton J, Heiman M, et al. Gastrointestinal microbiome modulator improves glucose tolerance in overweight and obese subjects: a randomized con- trolled pilot trial. J Diabetes Complications. 2015;29:1272–1276.
- Turunen K, Tsouvelakidou E, Nomikos T, et al. Impact of beta-glucan on the faecal microbiota of polypectomized patients: a pilot study. Anaerobe. 2011;17:403–406.
- Valeur J, Puaschitz NG, Midtvedt T, et al. Oatmeal porridge: impact on microflora- associated characteristics in healthy subjects. Br J Nutr. 2016;115:62–67.
- Drzikova B, Dongowski G, Gebhardt E. Dietary fibre-rich oat-based products affect serum lipids, microbiota, formation of short-chain fatty acids and steroids in rats. Br J Nutr. 2005;94:1012–1025.
- Abnous K, Brooks SPJ, Kwan J, et al. Diets enriched in oat bran or wheat bran tem- porally and differentially alter the composition of the fecal community of rats. J Nutr. 2009;139:2024–2031.
- Hu X, Xing X, Zhen H. Enzyme deactivation treatments did not decrease the bene- ficial role of oat food in intestinal microbiota and short-chain fatty acids: an in vivo study. J Sci Food Agric. 2013;93:504–508.
- Shen R-L, Dang X-Y, Dong J-L, et al. Effects of oat b-glucan and barley b-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. J Agric Food Chem. 2012;60:11301–11308.
- Zhang P-P, Hu X-Z, Zhen H-M, et al. Oat b-glucan increased ATPases activity and energy charge in small intestine of rats. J Agric Food Chem. 2012;60:9822–9827.
- Andersson KE, Axling U, Xu J, et al. Diverse effects of oats on cholesterol metabo- lism in C57BL/6 mice correlate with expression of hepatic bile acid-producing enzymes. Eur J Nutr. 2013;52:1755–1769.
- Berger K, Falck P, Linninge C, et al. Cereal byproducts have prebiotic potential in mice fed a high-fat diet. J Agric Food Chem. 2014;62:8169–8178.
- Wilczak J, Błaszczyk K, Kamola D, et al. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct. 2015;6:590–603.
- Ryan PM, London LEE, Bjorndahl TC, et al. Microbiome and metabolome modify- ing effects of several cardiovascular disease interventions in apo-E-/- mice. Microbiome. 2017;5:30.
- Luo Y, Zhang L, Li H, et al. Different types of dietary fibers trigger specific altera- tions in composition and predicted functions of colonic bacterial communicates in BALB/c mice. Front Microbiol. 2017;8:966.
- Metzler-Zebeli B, Hooda S, Pieper R, et al. Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of patho- genic Escherichia coli in the pig gastrointestinal tract. Appl Env Microbiol. 2010;76:3692–3701.
- O’Shea CJ, Sweeney T, Lynch MB, et al. Effect of b-glucans contained in barley- and oat-based diets and exogenous enzyme supplementation on gastrointestinal fermentation of finisher pigs and subsequent manure odor and ammonia emis- sions. J Anim Sci. 2010;88:1411–1420.
- Metzler-Zebeli BU, Zijlstra RT, Mosenthin R, et al. Dietary calcium phosphate con- tent and oat b-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiol Ecol. 2011;75:402–413.
- O’Shea CJ, Lynch MB, Sweeney T, et al. Comparison of a wheat-based diet supple- mented with purified b-glucans, with an oat-based diet on nutrient digestibility, nitrogen utilization, distal gastrointestinal tract composition, and manure odor and ammonia emissions from finishing pigs. J Anim Sci. 2011;89:438–447.
- Murphy P, Dal Bello F, O’Doherty JV, et al. Effects of cereal b-glucans and enzyme inclusion on the porcine gastrointestinal tract microbiota. Anaerobe. 2012;18:557–565.
- Torrallardona D, Andres-Elias N, Lopez-Soria S, et al. Effect of feeding piglets with different extruded and nonextruded cereals on the gut mucosa and microbiota during the first postweaning week. J Anim Sci. 2012;90(suppl 4):7–9.
- Moen B, Berget I, Rud I, et al. Extrusion of barley and oat influence the fecal micro- biota and SCFA profile of growing pigs. Food Funct. 2016;7:1024–1032.
- Gorham JB, Kang S, Williams BA, et al. Addition of arabinoxylan and mixed linkage glucans in porcine diets affects the large intestinal bacterial populations. Eur J Nutr. 2017;56:2193–2206.
- Ndou SP, Tun HM, Kiarie E, et al. Dietary supplementation with flaxseed meal and oat hulls modulates intestinal histomorphometric characteristics, digesta- and mucosa-associated microbiota in pigs. Sci Rep. 2018;8:5880.
- Pituch-Zdanowska A, Banaszkiewicz A, Albrecht P. The role of dietary fibre in in- flammatory bowel disease. Prz Gastroenterol. 2015;10:135–141.
- Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32:920–924.